Data Source Connectors: Complete Reference

Data source connectors are the foundation of your AI content pipeline. This comprehensive reference covers all available connectors, their configuration options, and best practices for implementation.

Overview

What are Data Source Connectors?

Data source connectors are specialized interfaces that allow AiWDC to extract content from various sources automatically. Each connector is designed to handle specific data formats, APIs, and protocols.

Available Connector Types

  1. RSS Feeds: Blog and news syndication
  2. Web Scraping: Website content extraction
  3. Database Integration: SQL and NoSQL databases
  4. API Integration: REST and GraphQL APIs
  5. Search Engines: Trend and content discovery
  6. File Processing: Document and media files
  7. Social Media: Platform-specific content
  8. Email: Newsletter and communication

RSS Feed Connectors

Configuration Options

connector_type: "rss_feed"

basic_config:
  feed_url: "https://example.com/feed.xml"
  update_frequency: "30 minutes"
  max_items_per_update: 10

content_filtering:
  include_keywords: ["AI", "machine learning", "automation"]
  exclude_keywords: ["spam", "irrelevant"]
  min_content_length: 500
  max_content_length: 5000

content_processing:
  extract_images: true
  clean_html: true
  remove_ads: true
  preserve_formatting: true

Supported Formats

  • RSS 2.0: Standard RSS feeds
  • Atom 1.0: Atom syndication format
  • JSON Feed: Modern JSON format
  • Media RSS: RSS with media enclosures

Best Practices

  1. Feed Validation: Ensure feeds are valid XML
  2. Update Frequency: Don’t overwhelm source servers
  3. Content Filtering: Use filters to maintain relevance
  4. Error Handling: Handle feed downtime gracefully

Web Scraping Connectors

Configuration Options

connector_type: "web_scraper"

target_config:
  start_url: "https://example.com/articles"
  crawl_depth: 2
  respect_robots_txt: true
  rate_limit: "2 requests per second"

content_extraction:
  content_selectors:
    title: "h1.article-title"
    body: "div.article-content"
    author: "span.author-name"
    date: "time.published-date"

  cleanup_rules:
    remove_elements: ["nav", "footer", "sidebar"]
    preserve_structure: true
    extract_images: true

advanced_options:
  javascript_rendering: true
  handle_pagination: true
  custom_headers:
    User-Agent: "AiWDC-Bot/1.0"

Advanced Features

  • JavaScript Rendering: Execute client-side JavaScript
  • Pagination: Handle multi-page content
  • Login Support: Authenticate for protected content
  • Proxy Support: Rotate IP addresses
  • CAPTCHA Handling: Solve automated challenges
  1. robots.txt: Always respect robots.txt directives
  2. Terms of Service: Review website terms
  3. Rate Limiting: Be respectful of server resources
  4. Copyright: Only scrape content you have rights to

Database Connectors

MySQL Configuration

connector_type: "mysql"

connection:
  host: "your-database-host"
  port: 3306
  database: "content_db"
  username: "content_user"
  password: "secure_password"
  ssl: true

query_config:
  query: "SELECT * FROM articles WHERE status = 'published' AND created_at > LAST_UPDATE"
  id_column: "article_id"
  last_update_column: "updated_at"

content_mapping:
  title: "title"
  content: "body"
  author: "author_name"
  publish_date: "publication_date"
  categories: "category_names"

PostgreSQL Configuration

connector_type: "postgresql"

connection:
  host: "localhost"
  port: 5432
  database: "content_repository"
  username: "content_admin"
  password: "database_password"

advanced_options:
  connection_pool: true
  pool_size: 10
  timeout: "30 seconds"

MongoDB Configuration

connector_type: "mongodb"

connection:
  uri: "mongodb+srv://user:password@cluster.mongodb.net/"
  database: "content_db"
  collection: "articles"

query:
  filter: {"status": "published", "published_at": {"$gt": "$LAST_RUN"}}
  projection: {"title": 1, "content": 1, "author": 1, "published_at": 1}
  sort: {"published_at": -1}
  limit: 100

Database Best Practices

  1. Security: Use encrypted connections
  2. Performance: Optimize queries with indexes
  3. Connection Management: Use connection pooling
  4. Error Handling: Handle connection failures
  5. Data Validation: Validate data before processing

API Integration Connectors

REST API Configuration

connector_type: "rest_api"

endpoint:
  base_url: "https://api.example.com/v1"
  authentication:
    type: "bearer_token"
    token: "your_api_token"

endpoints:
  - name: "articles"
    path: "/articles"
    method: "GET"
    parameters:
      limit: 50
      offset: 0
      status: "published"
    headers:
      Accept: "application/json"

pagination:
  type: "page_number"
  page_param: "page"
  max_pages: 10

rate_limiting:
  requests_per_minute: 60
  burst_limit: 10

GraphQL Configuration

connector_type: "graphql"

endpoint:
  url: "https://api.example.com/graphql"
  headers:
    Authorization: "Bearer your_token"
    Content-Type: "application/json"

query: |
  query GetContent($limit: Int!, $offset: Int!) {
    articles(limit: $limit, offset: $offset) {
      id
      title
      content
      author
      publishedAt
      tags
    }
  }

variables:
  limit: 50
  offset: 0

Authentication Methods

  • Bearer Token: Simple token-based auth
  • API Key: Key in header or query parameter
  • OAuth 2.0: Full OAuth2 flow support
  • Basic Auth: Username/password authentication
  • Custom: Custom authentication schemes

Search Engine Connectors

connector_type: "google_trends"

authentication:
  api_key: "your_google_api_key"

queries:
  - keyword: "artificial intelligence"
    timeframe: "now 7-d"
    geo: "US"
    category: "technology"

  - keyword: "machine learning"
    timeframe: "now 7-d"
    geo: "US"
    category: "technology"

processing:
  min_interest_score: 50
  trending_threshold: 80

Custom Search Configuration

connector_type: "custom_search"

search_engine:
  name: "google"
  api_key: "your_api_key"
  search_engine_id: "your_cse_id"

query_config:
  query: "AI content automation"
  results_per_page: 10
  safe_search: "moderate"
  language: "en"

filtering:
  exclude_domains: ["spam.com", "low-quality.com"]
  include_domains: ["techcrunch.com", "venturebeat.com"]
  date_range: "last_7_days"

File Processing Connectors

Document Processing

connector_type: "file_processor"

source:
  type: "s3"
  bucket: "content-bucket"
  prefix: "documents/"
  region: "us-east-1"

file_types:
  - ".pdf"
  - ".docx"
  - ".txt"
  - ".md"

processing:
  extract_text: true
  extract_metadata: true
  ocr_enabled: true
  language_detection: true

output_format:
  structure: "markdown"
  include_metadata: true
  preserve_formatting: true

Image Processing

connector_type: "image_processor"

source:
  type: "local_directory"
  path: "/content/images"

processing:
  extract_text: true  # OCR
  detect_objects: true
  generate_captions: true
  classify_content: true

output:
  include_image: false
  include_alt_text: true
  include_tags: true

Social Media Connectors

Twitter Configuration

connector_type: "twitter"

authentication:
  api_key: "your_api_key"
  api_secret: "your_api_secret"
  access_token: "your_access_token"
  access_token_secret: "your_access_token_secret"

data_collection:
  type: "search"
  query: "#AIcontent automation"
  result_type: "recent"
  count: 100

filters:
  min_retweets: 5
  min_likes: 10
  exclude_replies: true
  language: "en"

LinkedIn Configuration

connector_type: "linkedin"

authentication:
  client_id: "your_client_id"
  client_secret: "your_client_secret"
  access_token: "your_access_token"

endpoints:
  - name: "company_updates"
    path: "/companies/{company_id}/updates"
    fields: ["id", "text", "created", "author"]

rate_limiting:
  requests_per_hour: 500

Email Connectors

Newsletter Processing

connector_type: "email"

email_config:
  server: "imap.gmail.com"
  port: 993
  encryption: "ssl"
  username: "your_email@gmail.com"
  password: "your_password"

folder_config:
  folder: "INBOX/Newsletters"
  mark_as_read: true
  move_to_folder: "Processed"

content_extraction:
  extract_html: true
  extract_text: true
  remove_tracking: true
  extract_links: true

filtering:
  from_domains: ["substack.com", "medium.com"]
  subject_keywords: ["AI", "technology", "automation"]

Configuration Management

Environment Variables

environment:
  DEVELOPMENT:
    database_host: "localhost"
    api_rate_limit: "1000/hour"

  PRODUCTION:
    database_host: "prod-db.example.com"
    api_rate_limit: "10000/hour"
    ssl_required: true

Secret Management

secrets:
  database_password: "${DATABASE_PASSWORD}"
  api_token: "${API_TOKEN}"
  encryption_key: "${ENCRYPTION_KEY}"

Monitoring and Logging

Performance Monitoring

monitoring:
  metrics:
    - name: "extraction_success_rate"
      target: "> 95%"

    - name: "average_processing_time"
      target: "< 30 seconds"

    - name: "error_rate"
      target: "< 5%"

  alerts:
    - condition: "error_rate > 10%"
      action: "send_alert"

    - condition: "processing_time > 60 seconds"
      action: "log_warning"

Logging Configuration

logging:
  level: "INFO"
  format: "json"
  outputs:
    - type: "file"
      path: "/var/log/aiwdc/connectors.log"

    - type: "cloud"
      service: "cloudwatch"
      region: "us-east-1"

Error Handling

Common Error Types

  1. Connection Errors: Network issues, server downtime
  2. Authentication Errors: Invalid credentials, expired tokens
  3. Rate Limiting: Too many requests
  4. Data Format Errors: Unexpected data structures
  5. Permission Errors: Access denied

Error Recovery Strategies

error_handling:
  retries: 3
  backoff_strategy: "exponential"
  max_backoff: "5 minutes"

  fallback_actions:
    - type: "use_cache"
      ttl: "1 hour"

    - type: "alternative_source"
      priority: 2

    - type: "human_notification"
      channel: "slack"

Best Practices

1. Security

  • Use encryption for sensitive data
  • Implement proper authentication
  • Follow principle of least privilege
  • Regular security audits

2. Performance

  • Implement caching strategies
  • Use connection pooling
  • Optimize queries and requests
  • Monitor resource usage

3. Reliability

  • Implement retry logic
  • Use circuit breakers
  • Have fallback mechanisms
  • Monitor health metrics

4. Compliance

  • Follow data protection regulations
  • Respect terms of service
  • Maintain audit trails
  • Document data usage

Troubleshooting

Common Issues and Solutions

1. Connection Failures

  • Check network connectivity
  • Verify authentication credentials
  • Review firewall settings
  • Test with manual connections

2. Data Quality Issues

  • Validate data schemas
  • Implement data cleaning
  • Use quality scoring
  • Set up alerts for anomalies

3. Performance Problems

  • Monitor resource usage
  • Optimize queries
  • Scale resources
  • Implement caching

Future Enhancements

Upcoming Features

  • AI-Powered Extraction: Smart content identification
  • Real-time Processing: Stream processing capabilities
  • Advanced Analytics: Predictive maintenance
  • Multi-language Support: Global content sources
  • Blockchain Integration: Verified content sources

Conclusion

Data source connectors are the critical foundation of your AI content pipeline. By understanding and properly configuring these connectors, you ensure a reliable, efficient, and scalable content automation system.

Start with basic configurations, gradually implement advanced features, and continuously optimize based on performance data. With proper setup and maintenance, your connectors will provide years of reliable service.

Resources

  • Connector Documentation: Detailed API references
  • Configuration Templates: Ready-to-use configs
  • Troubleshooting Guide: Common issues and solutions
  • Best Practices: Industry-standard approaches
  • Community Support: User forums and discussions

By mastering these data source connectors, you’ll build a robust foundation for your AI content automation strategy.